<< Click to Display Table of Contents >> 1d_eulerian_shock |
{ 1D_EULERIAN_SHOCK.PDE
Comparison with shock tube problem of G.A. Sod
See 1D_LAGRANGIAN_SHOCK.PDE for a Lagrangian model of the same problem.
Ref: G.A. Sod, "A Survey of Several Finite Difference Methods for Systems of
Nonlinear Hyperbolic Conservation Laws", J. Comp. Phys. 27, 1-31 (1978)
See also Kershaw, Prasad and Shaw, "3D Unstructured ALE Hydrodynamics with the
Upwind Discontinuous Finite Element Method", UCRL-JC-122104, Sept 1995.
}
TITLE "Sod's Shock Tube Problem - Eulerian"
COORDINATES
cartesian1
SELECT
ngrid=200 { increase the grid density }
regrid=off { disable the adaptive mesh refinement }
errlim=1e-4 { lower the error limit }
VARIABLES
rho(1)
u(1)
P(1)
DEFINITIONS
len = 1
gamma = 1.4
smeardist = 0.001 { a damping term to kill unwanted oscillations }
eps = sqrt(gamma)*smeardist { ~ cspeed*dist }
INITIAL VALUES
rho = 1.0 - 0.875*uramp(x-0.49, x-0.51)
u = 0
P = 1.0 - 0.9*uramp(x-0.49, x-0.51)
EQUATIONS
rho: dt(rho) + u*dx(rho) + rho*dx(u) = eps*dxx(rho)
u: dt(u) + u*dx(u) + dx(P)/rho = eps*dxx(u)
P: dt(P) + u*dx(P) + gamma*P*dx(u) = eps*dxx(P)
BOUNDARIES
REGION 1
START(0) point value(u)=0
Line to (len) point value(u)=0
TIME 0 TO 0.375
MONITORS
for cycle=5
elevation(rho) from(0) to (len)
elevation(u) from(0) to (len)
elevation(P) from(0) to (len)
history(rho) at (0.5)
history(u) at (0.48) (0.49) (0.5) (0.51) (0.52)
history(p) at (0.48) (0.49) (0.5) (0.51) (0.52)
history(deltat)
grid(x)
PLOTS
for t=0.143, 0.375
elevation(rho) from(0) to (len)
elevation(u) from(0) to (len)
elevation(P) from(0) to (len)
history(rho) at (0.48) (0.49) (0.5) (0.51) (0.52)
history(u) at (0.48) (0.49) (0.5) (0.51) (0.52)
history(p) at (0.48) (0.49) (0.5) (0.51) (0.52)
END