<< Click to Display Table of Contents >> The Pulsating Blob |
Using the position balancing form from the preceding paragraph, the modified script for our example problem becomes:
TITLE 'Heat flow around an Insulating blob'
VARIABLES
Phi { the temperature }
Xm = MOVE(x) { surrogate X }
Ym = MOVE(y) { surrogate Y }
DEFINITIONS
K = 1 { default conductivity }
R0 = 0.75 { initial blob radius }
EQUATIONS
Phi: Div(-k*grad(phi)) = 0
Xm: div(grad(Xm)) = 0
Ym: div(grad(Ym)) = 0
BOUNDARIES
REGION 1 'box'
START(-1,-1)
VALUE(Phi)=0 VELOCITY(Xm)=0 VELOCITY(Ym)=0
LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=1 LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE
REGION 2 'blob' { the embedded blob }
k = 0.001
START 'ring' (R,0)
VELOCITY(Xm) = -0.25*sin(t)*x/r
VELOCITY(Ym) = -0.25*sin(t)*y/r
ARC(CENTER=0,0) ANGLE=360 TO CLOSE
TIME 0 TO 2*pi
PLOTS
FOR T = pi/2 BY pi/2 TO 2*pi
GRID(x,y)
CONTOUR(Phi)
VECTOR(-k*grad(Phi))
ELEVATION(Phi) FROM (0,-1) to (0,1)
ELEVATION(Normal(-k*grad(Phi))) ON 'ring'
END
The position and velocity forms of this problem can be seen in the following examples:
Samples | Usage | Moving_Mesh | 2D_Blob_Position.pde
Samples | Usage | Moving_Mesh | 2D_Blob_Velocity.pde
Three-dimensional forms of the problem can be seen in the following examples:
Samples | Usage | Moving_Mesh | 3D_Blob_Position.pde
Samples | Usage | Moving_Mesh | 3D_Blob_Velocity.pde