elasticity

<< Click to Display Table of Contents >>

Navigation:  Sample Problems > Applications > Stress >

elasticity

Previous pageReturn to chapter overviewNext page

{ ELASTICITY.PDE  

 

  This example shows the application of FlexPDE to a complex problem in

  thermo-elasticity.  The equations of thermal diffusion and

  plane strain are solved simultaneously to give the thermally-induced

  stress and deformation in a laser application.

 

  A rod amplifier of square cross-section is imbedded in a large copper

  heat-sink. The rod is surrounded by a thin layer of compliant metal.

  Pump light is focussed on the exposed side of the rod.

 

  We wish to calculate the effect of the thermal load on the laser rod.

 

 

  The equations of Stress/Strain arise from the balance of forces in a

  material medium, expressed as

       dx(Sx) + dy(Txy) + Fx = 0

       dx(Txy) + dy(Sy) + Fy = 0

 

  where Sx and Sy are the stresses in the x- and y- directions,

  Txy is the shear stress, and Fx and Fy are the body forces in the

  x- and y- directions.

 

  The deformation of the material is described by the displacements,

  U and V, from which the strains are defined as

       ex = dx(U)

       ey = dy(V)

       gxy = dy(U) + dx(V).

 

  The eight quantities U,V,ex,ey,gxy,Sx,Sy and Txy are related through the

  constitutive relations of the material. In general,

       Sx  =  C11*ex + C12*ey + C13*gxy - b*Temp

       Sy  =  C12*ex + C22*ey + C23*gxy - b*Temp

       Txy =  C13*ex + C23*ey + C33*gxy

 

  In orthotropic solids, we may take C13 = C23 = 0.

 

  Combining all these relations, we get the displacement equations:

       dx[C11*dx(U)+C12*dy(V)] + dy[C33*(dy(U)+dx(V))] + Fx = dx(b*Temp)

       dy[C12*dx(U)+C22*dy(V)] + dx[C33*(dy(U)+dx(V))] + Fy = dy(b*Temp)

 

 

  The "Plane-Strain" approximation is appropriate for  the cross-section

  of a cylinder which is long in the Z-direction, and in which there is no

  Z-strain. The cylinder is loaded by surface tractions and body forces

  applied along the length of cylinder, and which are independent of Z.

 

  In this case, we may write

       C11 = G*(1-nu)  C12 = G*nu                      b = G*alpha*(1+nu)

                       C22 = G*(1-nu)

                                       C33 = G*(1-2*nu)/2

 

  where G = E/[(1+nu)*(1-2*nu)]

        E is Young's Modulus

        nu is Poisson's Ratio

  and   alpha is the thermal expansion coefficient.

 

  The displacement form of the stress equations (for uniform temperature

  and no body forces) is then (dividing out G):

 

       dx[(1-nu)*dx(U)+nu*dy(V)] + 0.5*(1-2*nu)*dy[dy(U)+dx(V)]

                                               = alpha*(1+nu)*dx(Temp)

 

       dy[nu*dx(U)+(1-nu)*dy(V)] + 0.5*(1-2*nu)*dx[dy(U)+dx(V)]

                                               = alpha*(1+nu)*dy(Temp)

 

  In order to quantify the "natural" (or "load") boundary condition mechanism,

  consider the stress equations in their original form:

       dx(Sx) + dy(Txy) = 0

       dx(Txy) + dy(Sy) = 0

 

  These can be written as

       div(P) = 0

       div(Q) = 0

 

  where P = [Sx,Txy]

  and   Q = [Txy,Sy]

 

  The natural (or "load") boundary condition for the U-equation defines the

  outward surface-normal component of P, while the natural boundary condition

  for the V-equation defines the surface-normal component of Q. Thus, the

  natural boundary conditions for the U- and V- equations together define

  the surface load vector.

 

  On a free boundary, both of these vectors are zero, so a free boundary

  is simply specified by

       load(U) = 0

       load(V) = 0.

 

  -- Submitted by Steve Sutton, Lawrence Livermore National Laboratory

 

}  

 

title "Thermo-Elastic Stress"  

 

select errlim = 1.0e-4  

 

variables  

   Tp                 { declare the system variables to be Tp, Up and Vp }  

   Up  

   Vp  

 

definitions  

   k                   { declare thermal conductivity - values come later }  

   Q                   { declare thermal Source - values come later }  

   E                   { declare Young's Modulus - values come later }  

   nu                 { declare Poisson's Ratio - values come later }  

   alpha               { declare Expansion coefficient - values come later }  

 

                      { The heat deposition function: }  

   adep = 1.8         { define the absorption coefficient }  

   yo = 0.6           { define the pattern width }  

   I0  = 1             { define the input flux }  

   Qrodp = adep*I0*(exp(-adep*x))*(exp(-((y/yo)^2)))  

 

   Tb = 0.             { define the distant thermal sink temperature }  

 

                      { define the constitutive relations }  

   G = E/((1.+nu)*(1.-2.*nu))  

   C11 = G*(1-nu)  

   C12 = G*nu  

   C22 = G*(1-nu)  

   C33 = G*(1-2*nu)/2  

   b = G*alpha*(1+nu)  

 

                      { define some utility functions }  

   ex = dx(Up)  

   ey = dy(Vp)  

   gxy = dy(Up) + dx(Vp)        

   Sx  =  C11*ex + C12*ey - b*Tp  

   Sy  =  C12*ex + C22*ey - b*Tp  

   Txy =  C33*gxy  

 

boundary conditions

  'main' :

  value(Tp) = Tb     { fixed temperature }

  natural(Up) = 0.   { zero X-load }

  natural(Vp) = 0.   { zero Y-load }

 

  'left' :

  natural(Tp) = 0.   { no heat loss }

  natural(Up) = 0.   { zero X-load }

  natural(Vp) = 0.   { zero Y-load }

 

initial values  

   Tp = 5.             { give FlexPDE an estimate of variable range }  

   Up = 1.e-5  

   Vp = 1.e-5  

 

equations  

  { the heat equation }  

   Tp: dx(k*dx(Tp)) + dy(k*dy(Tp)) + Q = 0.  

 

  { the U-displacement equation }  

   Up: dx(C11*dx(Up)+C12*dy(Vp)-b*Tp) + dy(C33*(dy(Up)+dx(Vp))) = 0.  

 

  { the V-displacement equation }  

   Vp: dx(C33*(dy(Up)+dx(Vp))) + dy(C12*dx(Up)+C22*dy(Vp)-b*Tp) = 0.  

 

constraints                             { prevent rigid-body motion: }  

   integral(up) = 0                   { cancel X-motion }  

   integral(vp) = 0                   { cancel Y-motion }  

   integral(dx(vp) - dy(up)) = 0       { cancel rotation }  

 

boundaries  

 

region 1             { region one defines the problem domain as all copper

                           and sets the boundary conditions for the problem }  

   k = 0.083  

   Q = 0.  

   E = 117.0e3  

   nu = 0.4  

   alpha = 10e-6  

 

  start(0,-5)  

 

  use bc 'main'

  line to (5,-5) to (5,5) to (0,5)  

 

  use bc 'left'

  line to close  

 

region 2             { region two overlays an Indium potting layer }  

   k = 0.083  

   Q = 0.  

   E =  60.0e3  

   nu = 0.4  

   alpha = 16e-6  

  start (0,-0.6)  

  line to (0.6,-0.6) to (0.6,0.6) to (0,0.6) to (0,0.5) to (0,-0.5) to close  

 

region 3             { region three overlays the laser rod }  

   k = 0.0098  

   Q = Qrodp  

   E = 282.0e3  

   nu = 0.28  

   alpha = 7e-6  

  start (0,-0.5)  

  line to (0.5,-0.5) to (0.5,0.5) to (0,0.5) to close  

 

monitors  

  contour(Tp) as "Temperature"  

  contour(Tp) as "Temperature" zoom(0,0,1,1)  

  contour(Q) as "Heat deposition" zoom(0,0,1,1)  

  contour(Up) as "X-displacement" zoom(0,0,1,1)  

  contour(Vp) as "Y-displacement" zoom(0,0,1,1)  

  grid(x+10000*Up,y+10000*Vp) as "deformation"  

 

plots  

  grid(x,y)  

  contour(Tp) as "Temperature"  

  contour(Tp) as "Temperature" zoom(0,0,1,1)  

  contour(Q) as "Heat deposition" zoom(0,0,1,1)  

  contour(Up) as "X-displacement" !zoom(0,0,1,1)

  contour(Vp) as "Y-displacement" !zoom(0,0,1,1)

  contour(Sx) as "X-Stress"   zoom(0,-0.75,1.5,1.5)  

  contour(Sy) as "Y-Stress"   zoom(0,-0.75,1.5,1.5)  

  contour(Txy) as "Shear Stress"   zoom(0,-0.75,1.5,1.5)  

  vector(Up,Vp) as "displacement"  

  vector(Up,Vp) as "displacement" zoom(0,0,1,1)  

  grid(x+10000*Up,y+10000*Vp) as "deformation"  

 

end