bentbar_moving

<< Click to Display Table of Contents >>

Navigation:  Sample Problems > Applications > Stress >

bentbar_moving

Previous pageReturn to chapter overviewNext page

{ BENTBAR_MOVING.PDE

     

 This problem is a moving mesh variant of BENTBAR.PDE

}

 

title "Timoshenko's Bar with end load"

 

variables

   U(1e-6)           { X-displacement }

   V (1e-6)         { Y-displacement }

   Xm = move(x)

   Ym = move(y)

 

definitions

   L = 1               { Bar length }

   hL = L/2

   W = 0.1             { Bar thickness }

   hW = W/2

   eps = 0.01*L

   I = 2*hW^3/3       { Moment of inertia }

 

   nu = 0.3           { Poisson's Ratio }

   E  = 2.0e11         { Young's Modulus for Steel (N/M^2) }

                      { plane stress coefficients }

   G  = E/(1-nu^2)

   C11 = G

   C12 = G*nu

   C22 = G

   C33 = G*(1-nu)/2

 

   amplitude=GLOBALMAX(abs(v)) { for grid-plot scaling }

   mag=1/(amplitude+1e-6)

 

   force = -250         { total loading force in Newtons (~10 pound force) }

   dist = 0.5*force*(hW^2-y^2)/I       { Distributed load }

 

   Sx = (C11*dx(U) + C12*dy(V))       { Stresses }

   Sy = (C12*dx(U) + C22*dy(V))

   Txy = C33*(dy(U) + dx(V))

 

  { Timoshenko's analytic solution:  }

   Vexact = (force/(6*E*I))*((L-x)^2*(2*L+x) + 3*nu*x*y^2)

   Uexact = (force/(6*E*I))*(3*y*(L^2-x^2) +(2+nu)*y^3 -6*(1+nu)*hW^2*y)

   Sxexact = -force*x*y/I

   Txyexact = -0.5*force*(hW^2-y^2)/I

 

initial values

   U = 0

   V = 0

 

equations             { the displacement equations }

! force the displacements to evolve in pseudo-time, to allow a smooth deformation of the mesh.

! the time scale of these equations is arbitrary

   U:  dx(Sx) + dy(Txy) = dt(U)

   V:  dx(Txy) + dy(Sy) = dt(v)

! the mesh surrogate variables.  They move at the same rate as the material deformation

   Xm: dt(Xm) = dt(U)

   Ym: dt(Ym) = dt(V)

 

 

boundaries

  region 1

    start (0,-hW)

 

    load(U)=0         { free boundary on bottom, no normal stress }

    load(V)=0

      line to (L,-hW)

 

    value(U) = Uexact { clamp the right end }

    mesh_spacing=hW/10

      line to (L,0) point value(V) = 0

      line to (L,hW)

 

    load(U)=0         { free boundary on top, no normal stress }

    load(V)=0

    mesh_spacing=10

      line to (0,hW)

 

    load(U) = 0

    load(V) = dist   { apply distributed load to Y-displacement equation }

      line to close

 

time 0 to 1e-8 !by 1e-10

 

plots

for cycle=1

  ! x and y have already been moved by u and v, but this is small compared to mag*u, etc.

  grid(x+mag*U,y+mag*V)   as "deformation"   { show final deformed grid }

  elevation(V,Vexact) from(0,0) to (L,0) as "Center Y-Displacement(M)"

  elevation(V,Vexact) from(0,hW) to (L,hW) as "Top Y-Displacement(M)"

  elevation(U,Uexact) from(0,hW) to (L,hW) as "Top X-Displacement(M)"

  elevation(Sx,Sxexact) from(0,hW) to (L,hW) as "Top X-Stress"

  elevation(Txy,Txyexact) from(0,0) to (L,0) as "Center Shear Stress"

 

end "JqARWPEgsA1HmFOIXNmCNfb+qWfQGus/TmzjXhVHKZ2Q6NnpPJOCREi6wK8g8g+Pnvy7DriMhUjFAl1qcBgg5yF+MkmYxGJoetheissilVHa1rvSKiA1A0QLkuYpmTaJG2+/v5g68e+flbisgxXY2m4KBHCsFJGbJsy2FFnplf6"