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ABSTRACT
Two standards widely used in North America for strength design of architectural glass rely on a 
failure prediction model (FPM) that has been fitted to data from tests to failure of full-sized 
rectangular plates under uniform load. For non-rectangular units or non-uniform loads, however, 
rational analysis and limiting tensile stress or engineering analysis and judgment are required 
instead.  FPM  requires  load-induced  stresses  over  the  whole  glass  surface  to  calculate  the 
probability of brittle fracture.   The finite difference program first used to calculate stresses was 
limited to uniform loads on rectangular plates, the most common of architectural applications. 
Finite element analysis (FEA) removes these limitations, and with FPM, can usefully contribute 
to a more rational approach for all glass strength design.

1. INTRODUCTION

Rational analysis of the strength of thin glass 
plates  took a  leap forward twenty years  ago 
(1989)  with  the  simultaneous  appearance  of 
two North  American  design  standards  based 
on  the  failure  prediction  model  (FPM) 
developed  over  the  preceding  decade  [1-4]. 
FPM predicts the probability of sudden brittle 
failure  at  some  pre-existing  microscopic 
surface flaw while under lateral pressure (e.g. 
wind load).  FPM parameters can be adjusted 
to  fit  experimental  data,  and  as  used  in  the 
standards  were  fitted  conservatively  to  data 
available at the time.

Surface  flaws  are  assumed  to  be  randomly 
distributed, and to act as stress multipliers of 
varying  magnitude.  Whenever  under  tensile 
stress (in the presence of moisture and service 

temperatures),  glass  also  weakens 
progressively at surface flaws by replacement 
of  covalent  Si  bonds  with  hydrogen  bonds 
between hydroxyl groups:

—Si—Si— +H2O ---> —Si—OH HO—Si—.

The  great  advantage  of  FPM  is  that  its 
underlying  theory  of  cumulative  damage 
leading to sudden brittle failure explains many 
attributes  of  glass:  1)  reduced  strength  with 
increasing plate area; 2) reduced strength with 
increasing duration and magnitude of load; 3) 
reduced  strength  with  increasing  age  of 
surfaces exposed to degradation; 4) increased 
strength  of  glass  with  residual  compressive 
surface  stress  (RCSS)  locked  in  by  heat 
treatment or chemical exchanges.
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FPM  strength  predictions  require  surface 
stresses as determined by plate geometry and 
lateral  load,  load  duration,  and  assumptions 
about  the  condition  of  the  glass  (new  or 
weathered).  The computer program  on which 
the  1989  CGSB  and  ASTM standards  were 
based was  developed  specifically  for 
calculating  surface  stresses,  using  a  finite 
difference approach, which limited its scope to 
uniform loads on rectangular plates [5]. 

Finite  element  analysis  (FEA),  once 
prohibitively expensive and time consuming, 
is  now feasible,  though still  slower than the 
venerable  finite  difference program from the 
1980s.   FEA  is  well-suited  to  handle  non-
rectangular  plates  as  well  as  non-uniform 
loads. Overend et al are using a finite element 
program in their development of a generalized 
crack  growth  model  offered  as  an 
improvement on FPM [6]. Other programs are 
available  that  use  finite  element  methods 
specially  adapted  to  structural  analysis  of 
glass  structures  of  virtually  any  shape  and 
composition, under a wide range of loads and 
support conditions, but their solutions appear 
to be based on permissible stresses, and not on 
FPM [7]. 

The  authors  obtained  deformation  and stress 
distributions consistent with those of the finite 
difference  program  [5]  using  a  general-
purpose finite element program [8,9] to solve 
the same non-linear Von Karman equation for 
thin  plates.  Although  there  is  as  yet  no 
experimental  data to validate the results, this 
same program and procedure were then used 
to extend FPM to non-rectangular shapes and 
non-uniform loads.

Currently, designers of non-rectangular lights 
can  apply  some  of  the  insights  of  FPM  by 
examining  rectangular  shapes  with  the  same 
ratio of length to width. The 2004 version of a 
program  to  calculate  glass  strength  in 
accordance with the ASTM E 1300 standard 
[2]  has  an  “advanced”  option  that  replaces 
non-rectangular  shapes  by  their  enclosing 

rectangle  to  guarantee  conservative  results 
[10].  Comparisons  to  design  predictions 
obtained  by  the  authors  for  a  few  non-
rectangular lights are examined in Section 3.

2. FPM AND ITS RISK FUNCTION

2.1 Loads - stresses - probability of failure

Another  remarkable  feature  of  FPM  is  its 
economical  expression  of  the  key  relations 
between  loads,  stresses,  and  probability  of 
failure.  The secret of this achievement is to 
use  non-dimensional  forms  of  loads  and 
stresses  derived  from  finite  difference 
program runs to define a “risk function” for 
deriving the probability of failure.

A program run requires the following inputs: 
glass  properties  (modulus  of  elasticity=E, 
Poisson’s  ratio),  dimensions  of  the  light 
(thickness=h,  length=a,  width=b),  and 
probability  distribution  parameters  (shape=m 
and  scale=S0),  and  uniform  load=Q.  As 
applied  in  the  two  standards  [1-2],  the 
parameters to be specified by the designer are 
the  load  and  the  light  dimensions  —  glass 
properties  and  probability  parameters  are 
fixed.

In non-dimensional form, all these inputs are 
reduced to two, load (non-dQ) and stress (non-
dS).

non-dQ = Q*(ab)² / (Eh4)     (1)

non-dS = S*(ab) / (Eh²)                          (2)

Equally  important  is  the  non-dimensional 
expression for  the  risk function=R, which is 
determined  by  three  quantities:  m,  non-dQ, 
and a/b.  Each run is valid for any rectangular 
light sharing the same non-dQ and a/b! 

Probability  of  failure  can  therefore  be 
extracted from a table of the risk function R, 
with  M columns  of  non-DQ and N rows of 
aspect  ratio  a/b.  The  table  requires  M  x  N 
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computer runs. Results for intermediate values 
of non-DQ and a/b can be interpolated.

Additional  tables  are  just  as  easily  prepared 
for other quantities of interest in design, such 
as  central  (maximum)  displacement;  average 
displacement;  and global maximum principal 
tensile stress (MPTS) Average displacement is 
used  to  compute  load  sharing  in  IGU units, 
and MPTS sheds light on the relation between 
FPM  and  the  quite  different  technique  of 
permissible stress design.

2.2 More about the risk function

Strength predictions, however arrived at, must 
deal  with random variation in glass strength. 
Tests to failure of apparently identical plates 
of annealed glass usually have a coefficient of 
variation  of  20  –  25  percent.  What  are  not 
apparent  are  the  microscopic  surface  flaws, 
assumed  to  be  distributed  randomly  both 
spatially and in orientation.

FPM  deals  with  this  variability  by  fitting  a 
two-parameter  Weibull  distribution, 
describing the observed probability of failure 
of  test  pieces  at  various  pressures.  The  two 
parameters set the shape and scale that best fit 
experimental results. They have been found to 
vary  according  to  the  classification  of  glass 
tested:  new  vs.  in-service  glass;  level  of 
residual compressive surface stress (RCSS).

The  risk  function  is  the  integration  of  risk 
density  over  that  portion  of  the  surface 
containing  micro-flaws  under  tensile  stress 
normal to their directions. This component of 
stress  is  calculated  from  maximum  and 
minimum  principle  tensile  stress  over  the 
whole surface. Thus, each variation affecting 
stress  distribution,  for  instance  a  triangular 
plate  versus  a  rectangular  one,  requires  a 
whole new tabulation for FPM to work. The 
same is true for each value or distribution of 
RCSS [11].

3. SHAPE SHIFTS OR STRESS DESIGN

3.1 Rectangular substitutes

Non-rectangular 
glazing assembled with 
larger rectangular units 
will typically use glass 
of  the  same  thickness 
for  optical  reasons. 
Shifting  to  a 
rectangular  shape with 
the  same  length  to 
width  ratio  is  another 

way to use FPM for strength design.

3.2 Equal Area or Enclosing Rectangles

Larger rectangular shapes used to predict the 
strength  of  a  related  non-rectangular  shape, 
produce more conservative designs. Enclosing 
rectangles are conservative for any shape, but 
equal  area  rectangles  are  not.  Table  1 
compares  design  loads  for  both  to  those 
determined  by  the  authors'  extended  FPM 
models for non-rectangular shapes.

Table 1: Rectangle loads as percentages of the 
design load (8/1000) for five different shapes.

Thickness _ Area 
mm _ m²

Load 
kPa

Equal 
%

Enclosing 
%

circle           4_1 2.47  82 68
                    4_2 1.71  68 55
                    6_2 2.12  86 72
semi-circle  4_1 1.72  93 78
                    4_2 1.05  95 81
                    6_2 1.56  94 77
oval             4_1 1.74  92 77
                    4_2 1.21  82 70
                    6_2 1.55  95 78
triangle       4_1 1.79  112 64
                    4_2 0.97  120 59
                    6_2 1.65 108 64
trapezoid    4_1 1.78  99 85
                    4_2 1.08 102 86
                    6_2 1.60  99 84
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Equilateral  triangles  are  weaker  than  equal 
area  rectangles.  Enclosing  area  rectangles 
have  safety  margins  ranging  from 14  to  45 
percent for all the examples in Table 1. FPM 
tables for non-rectangular shapes would bring 
significant  improvements  in  consistency and 
economy to strength design.
  
3.3 Comparison of stress and risk functions

Why not control the risk of failure by keeping 
the maximum stress on the surface of the plate 
below a permissible value? This might work if 
the surface stress was the same everywhere, in 
every direction, but it isn’t. The risk of failure 
increases  with  tensile  stress  normal  to  the 
direction of each micro-flaw, so the stress at 
each point must be reduced as a function of 
the ratio  of minimum to maximum principle 
stress at each and every point on the surface. 
Then  these  modified  stresses  are  integrated 
over  the  whole  surface  to  form  the  risk 
function. 

The next two figures demonstrate the effect of 
weighting the stresses to form a risk density 
distribution,  which is then integrated to give 
the risk function. Figure 1 compares stresses 
to  risk  densities  for  the  equilateral  triangle 
from Table 1, while Figure 2 does the same 
for its equal area rectangle.

By  FPM  design,  the  equal  area  rectangle 
supports 1.2 times the load permitted for the 
triangle  (see  Table  1).  A  maximum  stress 
design, on the other hand, would give a lower 
load  for  the  rectangle  since  its  maximum 
stress  (26 MPa)  exceeds  that  of  the  triangle 
(23 MPa).

The dark areas of the risk density distributions 
are the most likely regions for failures to start, 
a fact that can serve as a useful check on the 
plausibility  of  FPM, as  will  be  discussed  in 
Section 4. 

Figure  1:  Stresses  (greatest  in  the  corner 
circles, max = 23 MPa) and risk density for a 
4mm, 2m² triangle at its design load, 0.97 kPa.

Figure 2: Stresses (greatest at the corners, max 
= 25.7 MPa) and risk density for a 4mm, 2m² 
rectangle at its design load of 1.16 kPa.

The  next  comparison  of  stress  and  risk 
functions  was  made  using  a  program  for 
manipulating the FPM tables, rather than finite 
difference or finite element analysis. Figure 3 
shows  considerable  variations  of  capacity, 
displacement,  and  maximum  stress  with 
aspect ratio (height / width) for a plate of area 
2 m² and thickness 5.66 mm. Unlike the other 
curves, the risk function is represented in non-
dimensional  form  by  its  natural  logarithm 
(17.97). 

Plots for smaller and larger areas, but keeping 
the ratio of thickness/(area)½ constant,  show 
similar  trends.  Variation  of  capacity  with 
aspect  ratio  was  a  contentious  issue  when 
FPM  was  first  introduced,  but  is  now 
accepted, though not easy to demonstrate. As 
expected,  design  by  global  maximum  stress 
will give a different account of this variation 
with aspect ratio than does FPM.
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Figure  3:  Design  (8/1000)  capacity,  kPa; 
centre  displacement,  mm;  maximum  stress, 
MPa; and Ln(risk function) for a glass plate of 
thickness  5.66  mm  and  area  2  m²,  plotted 
against aspect ratio (height/width).

3.4 FPM for point loads

Point  and  line  loads  are  specified  for  guard 
rails  in  front  of  glazing  approaching  floor 
level  in  public  places.  If  guard  rails  are  not 
provided, the glazing itself must be analyzed 
to  demonstrate  that  those  loads  can  be 
accommodated. Engineering judgment is used 
to come up with a critical loaded area (greater 
than the load patch area in the case of a point 
load). No such  ad hoc estimate is required if 
probability  of  failure  is  determined  directly 
from the FPM risk function.

Figure 4 illustrates  an FEA/FPM analysis  of 
stress  and  risk  function  that  confirmed  the 
conclusions of an earlier FEA study using an 
ad hoc critical area estimate of 0.4 m2. 

FPM showed that the load patch area (.01 m2) 
contributed  97% of  the  risk  function,  which 
gave a failure probability of 3/1000 for a 1.5 
kN load applied for 1 second. The minimum 
RCSS for heat strengthened glass (24.1 MPa) 
was used instead of the type factor of 2.0.

 

Figure 4: Stress and Risk density distributions 
for 1.5 KN point load (governing load for the 
glass guard in this case).

4. RECOMMENDATIONS

4.1 FPM: An accepted procedure

FPM  came  into  favour  twenty  years  ago 
because it was shown to represent many of the 
most  obvious  and  essential  features  of  the 
observed behaviour of glass tested to failure 
under uniform pressure. Its success is due in 
large part to tabulations of four key quantities 
in non-dimensional  form that can be applied 
immediately  to  a  considerable  range  of 
practical design problems without the need for 
expensive  and  time-consuming  numerical 
analysis in each case.

Now that it is feasible to extend the range of 
application  to  non-rectangular  glass  shapes, 
and  non-uniform  load  patterns,  large-scale 
experiments  seem  advisable  to  confirm  that 
the  calculated  stresses  and  deflections  are 
correct,  as was done for the finite difference 
program.   Once that  is  achieved,  tabulations 
for new shapes and loadings can be put into 
service.  In  addition,  FEA/FPM  can  then  be 
used  with  greater  confidence  for  design  in 
one-off situations where shape or load pattern 
are unusual.
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4.2  Tables for RCSS

Norville and Morse claim improved accuracy 
and greater capacity for heat treated glass by 
replacing  the  type  factors  2,  for  heat 
strengthened (HS), and 4, for fully tempered 
(FT) by new charts appropriate for each type 
[11].  The  larger  design  loads  result  from 
computing  the  risk  function  for  net  tensile 
stresses  after  the  RCSS  is  subtracted 
(minimums allowed are 24.1 MPa for HS and 
68.9 MPa for FT). 

Norville and Morse have prepared charts for 
each of ten glass thicknesses (3 – 22 mm) for 
9  (HS) plus 7 (FT) RCSS values,  a  total  of 
160 charts. The authors, not being particularly 
fond  of  working  with  charts,  would  prefer 
tables instead.
  
When RCSS is used in conjunction with FPM 
to  determine  the  probability  of  fracture  of 
tempered  or  heat-strengthened  glass,  it  is 
assumed to be uniform, and the lowest values 
allowed for each category of strengthening are 
used. In practice, residual stresses from these 
treatments are neither uniform, nor as low as 
the allowed minimums. 

Non-uniform  RCSS  is  sometimes  used 
deliberately  to  influence  patterns  of  fracture 
[12].  FEA offers  the  possibility  of  coupling 
heat flow and mechanical properties to predict 
non-uniform  patterns  of  RCSS  which  could 
then  be  used  with  FPM  to  determine 
probability of fracture.

4.3 Loads

Loads  are  even  more  variable  than  glass 
strength.  The  wind loads  specified  for  glass 
design are deemed to have a return period of 
50  years,  i.e.  a  probability  of  .02  of  being 
equaled or exceeded in any year. The duration 
of the design load is currently different for the 
two standards; 60 seconds in Canada [1] and 3 
seconds  in  the  USA  [2].  In  addition,  the 

Canadian standard uses the limit states design 
approach, and includes an additional factor of 
1.4 to cover possible inaccuracies or variation 
in the calculation of the wind load.

The  60  second  duration  is  justified  in  the 
Canadian  standard  as  the  steady  state 
equivalent  to  a  one  or  two-hour  storm’s 
collection of gusts, of which one lasting 1 – 3 
seconds  is  the  maximum.   The  equivalency 
was calculated using the damage accumulation 
function  inherent  in  the  FPM,  on  a  set  of 
scaled up wind pressure recordings on a high 
rise building.

Those  damage  accumulation  calculations 
should  be  revisited  in  the  light  of  concerns 
about  the  way  pressure  recordings  were 
substituted  for  stresses  [13].  Interesting 
observations  on  the  nature  of  damage 
accumulation  under  fluctuating  pressures 
based on wind tunnel data have come to light 
recently  in  a  Ph.D.  dissertation  [14],  which 
may lead to an improved approach.

4.4  Strength of in-service glass

FPM tables  for  converting  uniform loads  to 
estimates  of  the  probability  of  failure  of 
rectangular  glass  plates  still  use  the  original 
compromises for Weibull parameters m and S0 

based on the range of values fitted to the tests 
to failure of in-service glass available prior to 
1989  [15].  The  tests  of  in-service  glass 
revealed  significantly  higher  strengths  for 
surfaces of insulating glass units that faced the 
sealed  air  spaces.  On  the  other  hand,  both 
exterior and interior surface strengths fell well 
below that  expected  for  new glass,  in  some 
cases by as much as 50 percent.

The consensus reached by the code writers of 
the  CGSB  and  ASTM  standards  was  a 
compromise in every sense of the word, and 
deserves  attention  here.  After  considerable 
discussion,  the  writers  agreed  to  follow  the 
lead of one prominent manufacturer in settling 
on  in-service,  as  opposed  to  new-glass 
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strength,  even  though  only  5  percent  of  the 
available  tests  were  made  on  inner  or  outer 
surfaces  of  glass  retrieved  after  twenty  or 
more years in service (279 out of more than 
5000 samples collected world-wide) [15,16].

The  compromise  reduction  in  strength 
currently applies to strengthened glass (RCSS 
> 0), and in view of its expanding use, there is 
merit  in  clarifying  whether  tensile  stress  at 
existing micro-flaws is necessary for strength 
loss. If RCSS is rarely exceeded in service, the 
rate of deterioration could be considerably less 
than the 30 or 40 percent applied to all glass. 
This  might  also  apply  to  additional  damage 
created by wind-blown grit. 

4.5  Experimental Validation

The only sure way to validate the use of any 
design method, including FPM, is agreement 
between prediction of failure probability and 
full-scale  experiments.  Figure  5  compares 
FPM  prediction  to  tests  of  107  samples  of 
6mm x 2.36m x 3.78m new float glass. Figure 
6 does the same for 47 tests to failure (various 
sizes) after 15 years in service. In both figures, 
the  ratio  of  failure  load  to  design  load  is 
plotted against probability of failure [16].

Figure 7 shows reasonable agreement between 
the risk density ‘hot spots’ and failure origins 
for 29 4 mm plates 0.924 m x 1.304 m in size.

Figure 5. New glass: Ratio of failure load to 
8/1000 FPM with m = 7 and S0 = 40 MPa

Figure 6. 15-year-old annealed glass: Failure 
load  is  divided  by the design load from the 
1989 CGSB standard, using m = 7 and S0 = 
32.1 MPa.

The 29 diamonds 
are  mostly  in  or 
near  the  highest 
risk  areas  of  this 
risk  density  plot, 
which  applies  to 
a  subset  of  the 
tests  plotted  in 
Figure 6.  The 18 
other  failure 
origins  were  on 
smaller plates.

Figure 7. FPM risk density plot for annealed 
glass, 4 mm x 924 mm x 1304 mm. Weibull 
parameters are m = 7 and S0 = 32.1 MPa.

5. CONCLUSIONS

5.1 Non-rectangular shapes

Additional FPM tables, one set for each new 
combination of a shape and RCSS level, will 
well  repay  the  cost  of  their  one-time 
preparation, even though many FEA runs are 
involved.

5.2 Non-uniform loads

Dedicated FEA runs will be required for each 
configuration.  FPM  is  highly  recommended 
for estimating probability of failure.
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5.3 FPM improvements and validation

Validation  by  full-scale  and  laboratory 
experiments has been the foundation of FPM 
from  the  beginning.  Improvements  often 
follow from comparisons with tests, and each 
extension,  such  as  non-rectangular  shapes, 
should  be  followed  up  by  tests.  Strength 
degradation  urgently  requires  investigation. 
Other  much  needed  improvements  (not 
discussed in this paper) include consideration 
of  dynamic  impact  loading  and  failures 
originating at edge flaws [16].
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