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Abstract

In many high-voltage pulsed power systems the electric
fields are predominantly inductive rather than
electrostatic. That is, in the usual expression for

generalized electric field, E = -V®—0A /0t, @ is the
scalar potential that gives rise to the electrostatic field,
and A is the magnetic vector potential, from which the
inductive field is derived. In problems where there are
regions without charge separation or steady state currents
flowing, the electrostatic component does not exist, and
the usual technique of solving the scalar Laplace’s
equation for the potential is inappropriate for determining
the electric fields. Calculation of the magnetic vector
potential is plagued by choice of gauge condition and
specification of correct boundary conditions. Especially
for coaxial (axisymmetric) systems typical of many
pulsed power components and systems, where the current
flow is in the r,z plane, there are two components of the
vector potential that must be solved—each with its own
boundary conditions. Specification of all the correct
boundary conditions is non-trivial.

In this paper, we present a convenient technique for the
calculation of inductive electric fields in coaxial systems.
The technique is based on the introduction of a vector
electric potential that is derived from Poisson’s equation,
in combination with Faraday’s Law and the E, D
constitutive relation. In coaxial geometry, the electric
vector potential is only azimuthal and, therefore, quasi-
scalar. It is conveniently calculated with any two-
dimensional Poisson equation solver, and the resultant
inductive field distribution easily calculated. We have
used the technique in several pulsed power system

designs with success. Specific examples of the
application of the technique are given.
I. INTRODUCTION

In high-voltage pulsed power apparatus design, one
must always be concerned with electrical breakdown that
arises when electric field exceeds breakdown thresholds.
In electrostatic systems, the field is given solely by the
gradient of a scalar potential,

E =-V®. )

es

For dynamic pulsed systems, the electric fields may be
primarily inductive—that is, due to time-varying
magnetic fields associated with time-varying currents. It

can be shown that, in general, if A is the magnetic vector
potential (B = VxA), then the inductive electric field
component is given by
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For axisymmetric configurations with current flow only
in the azimuthal (6) direction, the magnetic vector
potential has only one component (0), also, so that when
Eq. (2) is substituted into Ampere’s Law, a single scalar
equation results. As in the case for two-dimensional
electrostatic field calculation from Laplace’s Equation,
any of several two-dimensional partial differential
equation solvers can be used to calculate the potentials,
and from them the fields.

However, when the magnetic fields are in the azimuthal
direction (as for coaxial current flow configurations,
typical of many pulsed power devices), the magnetic
vector potential generally has two components, 4, and 4..
Solution now is no longer straightforward. In order to
solve for the inductive electric field in such cases, we
have developed a new technique that results in a single
quasi-scalar potential-type equation that is relatively easy
to solve using standard finite-element partial differential
equation programs.

In the next section, we present the mathematical
formalism associated with the electric vector potential
and discuss boundary conditions. We give an electric
vector potential example in section III.

II. ELECTRIC VECTOR POTENTIAL

A. Basic Formulation
We begin with Poisson’s equation in the absence of
space charge,

V-D=0. 3
Knowing that if the divergence of a vector is identically
equal to zero then it can be represented as the curl of

another vector, we express the electric flux density as the
curl of an electric vector potential, F,

D=-VxF. @)

We now express the electric field in terms of the
electric flux density, using the constitutive relation



D=c¢E, &)

E=-VxF/¢. 6)
Next, we use Faraday’s Law,

VxE:—a—B, (7
Ot

substituting for E from Eq. (6), to obtain finally

Vx(VxF/s)z?a—]?. ®)

Since, for axisymmetric azimuthal magnetic fields, the
value of the magnetic flux density is given simply by

p=toly ©)
2w r

the source term in Eq. (8) is usually known.

If the permittivity is uniform, at least in sub regions,
then we can invoke a vector identity and rewrite Eq. (8)
as

V*(F)-V(V-F)= —8%—1:. (10)

To simplify the calculation, we choose a “Coulomb-
type” gauge condition for F; that is,

V-F=0, an

so that we obtain, finally, a vector Poisson equation for
the electric vector potential,

V*(F)=—-¢ B . (12)
ot

Note that both F and B have a 6 component, only, so
that the equation is quasi-scalar.

B. Boundary Conditions

Solution of Eq. (12) over a region requires specification
of boundary conditions. Such boundary conditions can
either be in terms of the value of the electric vector
potential or its normal derivative (tangential electric flux
density). In many cases, (i.e., for good inductors) the
conductor surface conductivity is sufficiently high that
the tangential electric field is approximately zero in
comparison to other boundary segments where the
tangential electric field is known to be large.

Another boundary condition that often arises is that
associated with an applied voltage source. In this case,
one can usually specify a constant electric vector
potential, so that the normal component of electric field
(tangential derivative) is zero.

To obtain more accurate values of the tangential
electric fields, or flux densities, one can solve the
diffusion equation for the magnetic field, and from the
solution calculate the tangential current density at the
surface. The product of the surface current density and
the conductor resistivity (inverse electrical conductivity)
must match the tangential electric field at the surface. If
the current density action integral,

sz j2dt, 13)

is sufficiently large, nonlinear effects may result from
Joule heating and the subsequent temperature rise and
conductivity decrease[1].

ITII. EXAMPLE CALCULATION

To illustrate the use of the electric vector potential, we
present an example of the calculation of the inductive
electric field inside a coaxial inductive cavity, to which a
voltage source is applied. The geometry is shown in Fig.
1. In reality, the current around the cavity surface will be
limited by the effective series resistance over a time scale
approximately equal to the cavity inductance divided by
the effective series resistance. For times short compared
to this time scale, the voltage drop around the cavity is
essentially inductive, and the developed formalism
applies. The calculation tool we use to obtain the solution
for both the vector potential and inductive electric field is
FlexPDE™, a generalized two-dimensional finite element
partial differential equation solver [2].
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Figure 1. Geometry for simple example.

In this example, we assume the cavity is filled with two
different dielectric materials, with &; > ¢,. The boundary
condition around the surface of the cavity is that the
normal derivative of F is approximately zero, V xF = 0
(good conductor), and along the left edge, where the



voltage source is applied, that the electric vector potential
is zero, F = 0 (no normal component of electric field).

Electric vector equipotential contours are shown in Fig.
2. Fig. 3 shows inductive electric field streamlines, and
Fig. 4 is a contour plot of the magnitude of the electric
field. Note the discontinuity in field lines from region 1 to
region 2. By solving for the vector potential via finite
element techniques, we automatically satisfy the interface
conditions on E and D.
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Figure 2. Electric vector equipotentials.
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Figure 3. Inductive electric field streamlines.
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Figure 4. Inductive electric field magnitude.

IV. SUMMARY

In this paper we have presented a technique for
calculating inductive electric fields associated with
changing azimuthal magnetic fields in axisymmetric
configurations. The technique is based on an electric
vector potential, which only has an azimuthal component
for this class of problems. The vector Poisson equation
for the vector potential therefore is quasi-scalar, and it
can be solved using any two-dimensional partial
differential equation solver that can handle axisymmetry.

We have discussed the formalism for the electric vector
potential and the boundary conditions required for its
solution, from which the inductive electric field derives.
We have demonstrated the technique with a simple
example that illustrates the salient features.

The electric vector potential technique has been applied
to the design of multiple pulsed power experiments and
devices at AFRL, including high voltage pulse-forming
elements in inductive storage circuits [3] and solid liner
current feeds for NTLX experiments driven by the
SHIVA STAR capacitor bank facility [4].
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