<< Click to Display Table of Contents >> complex_emw21 |
{ COMPLEX_EMW21.PDE
This problem is an image of "Backstrom_Books|Waves|Electrodynamics|emw21.pde"
rewritten in terms of complex variables.
}
TITLE { emw21.pde }
'Plane Wave in a Conductor'
SELECT
errlim= 1e-3 { Limit of relative error }
VARIABLES
Ez = complex(Ezr,Ezi) { Real and imaginary parts }
DEFINITIONS { SI units throughout }
Lx= 1.0 Ly= 0.2 { Domain size }
eps0= 8.85e-12 eps { Permittivity }
mu0= 4*pi*1e-7 mu { Permeability }
sigma { Electric conductivity }
omega= 5e9 { Angular frequency }
Ez_in= 1.0 { Input field Ez }
Ep= magnitude(Ez) { Modulus of Ez }
phase= carg(Ez)/pi*180 { Angle }
EQUATIONS
Ez: del2( Ez)+ mu*omega*complex(eps*omega, -sigma)*Ez= 0
BOUNDARIES
region 'conductor' eps= eps0 mu= mu0 sigma= 1e-1
start 'outer' (0,0)
natural(Ez)= complex(0,0) line to (Lx,0)
value(Ez)= complex(0,0) line to (Lx,Ly) { Conducting }
natural(Ez)= complex(0,0) line to (0,Ly)
value(Ez)= complex(Ez_in,0) line to close { Input field }
PLOTS
elevation( Ez, Ep) from (0,Ly/2) to (Lx,Ly/2)
elevation( phase) from (0,Ly/2) to (Lx,Ly/2)
elevation( Ez, Ep) on 'outer'
contour( Ezr) contour( Ezi)
END