theneq+time

<< Click to Display Table of Contents >>

Navigation:  Sample Problems > Usage > Sequenced_Equations >

theneq+time

Previous pageReturn to chapter overviewNext page

{ THENEQ+TIME.PDE

   

   This example demonstrates the use of sequenced equations in time-dependent problems.

 

   The variable U is given a source consistent with the desired solution of

       U=A-(x^2+y^2)

   The variable V has a source equal to -U.  The analytic solution to this equation is

       V = A*(x^2+y^2)/4 - (x^4+y^4)/12

   The variable V therefore depends strongly on U, but U is unaffected by V.  

 

   In this case, we can separate the equations and solve for V in a THEN clause.

 

}

title 'Sequenced equations in time-dependent systems'

select ngrid=40

variables

   u(0.01),v(0.01)

definitions

   k = 1

   a=2

  ! analytic solutions

   u0 = (a-x^2-y^2)

   v0 = (a*(x^2+y^2)/4-(x^4+y^4)/12)

equations

   u: div(K*grad(u)) + 4 = dt(u)

then

   v: div(K*grad(v)) - u = dt(v)

boundaries

  Region 1

  start(-1,-1)

    ! ramp the boundary values, so that the initial BV's are consistent with the initial interior values.

    value(u)=u0*Uramp(t, t-10)          

    value(v)=v0*Uramp(t, t-10)

  line to (1,-1) to (1,1) to (-1,1) to close

time 0 to 100

plots

  for cycle=10

    contour(u)  paint

    surface(u)

    contour(v)  paint

    surface(v)

    elevation(u,div(K*grad(v))) from(-1,0) to (1,0)

    history(u,v) at (0,0)

end