3d_ploton

<< Click to Display Table of Contents >>

Navigation:  Sample Problems > Usage > Plotting >

3d_ploton

Previous pageReturn to chapter overviewNext page

{ 3D_PLOTON.PDE

 

 This problem shows some of the possible 'ON' qualifiers for 3D plots.

 

}  

 

title '3D Test -- Plot Qualifiers'  

 

coordinates  

   cartesian3  

 

Variables  

   u  

 

definitions  

   k = 0.1  

   heat = 4  

 

equations  

   U:     div(K*grad(u)) + heat   = 0  

 

extrusion  

  surface "S1" z = 0

      layer 'one'  

  surface "S2" z = 0.8-0.3*(x^2+y^2)  

      layer 'two'

  surface "S3" z = 1.0-0.3*(x^2+y^2)    

 

boundaries  

  region 1 'outer'  

      layer 'two' k = 1  

      start(-1,-1)  

          value(u) = 0  

      line to (1,-1) to (1,1) to (-1,1) to close  

  region 2 'plug'  

      layer 'two' k = 1  

      start 'dot' (0.5,0.5) arc(center=0,0) angle=360  

 

plots  

    grid(x,y,z) on "outer" as "Only Region 1, both layers"  

    grid(x,y,z) on region 'plug' on layer "two" as "Region 2 Layer 2"  

    grid(x,y,z) on region 'plug' on layers "one","two" paintregions as "Region 2, both layers"  

    grid(y,z) on x=0 on 'plug'   as "Cut plane on region 2"  

    contour(u) on x=0.51   on layer "two" as "Solution on X-cut in layer 2"    

    contour(u) on z=0.51   on region "Plug" as "Solution on Z-cut in region 2"  

    contour(u) on surface "S2" on region "plug" as "Solution on paraboloidal layer interface"  

    vector(grad(u)) on surface "S2" on 'outer' as "Flux on layer interface in region 1"

    glcontour(u) on 'outer' on 'two'

    glcontour(k*dx(u)) on 'outer' on 'two'

 

end