resolve

<< Click to Display Table of Contents >>

Navigation:  Sample Problems > Usage > Mesh_Control >

resolve

Previous pageReturn to chapter overviewNext page

{ RESOLVE.PDE

 

 This is a test problem from Timoshenko: Theory of Elasticity, p41

 

 The RESOLVE statement has been added to force regridder to resolve the

 shear stress.

 

}  

 

title "RESOLVE shear stress in bent bar"  

 

select  

   elevationgrid=500  

   cubic  

 

variables  

   U   { X-displacement }  

   V   { Y-displacement }  

 

definitions  

   L = 1               { Bar length }  

   hL = L/2  

   W = 0.1             { Bar thickness }  

   hW = W/2  

   eps = 0.01*L  

   I = 2*hW^3/3       { Moment of inertia }  

 

   nu = 0.3           { Poisson's Ratio }  

   E  = 2.0e11         { Young's Modulus for Steel (N/M^2) }  

                      { plane stress coefficients }  

   G  = E/(1-nu^2)  

   C11 = G  

   C12 = G*nu  

   C22 = G  

   C33 = G*(1-nu)/2  

 

   amplitude=1e-6     { a guess for grid-plot scaling }  

   mag=0.1/amplitude  

 

   force = 250         { total loading force in Newtons (~10 pound force) }  

   dist = 0.5*force*(hW^2-y^2)/I     { Distributed load }  

 

   Sx = (C11*dx(U) + C12*dy(V))       { Stresses }  

   Sy = (C12*dx(U) + C22*dy(V))  

   Txy = C33*(dy(U) + dx(V))  

 

   Vexact = (force/(6*E*I))*((L-x)^2*(2*L+x) + 3*nu*x*y^2)  

   Uexact = (force/(6*E*I))*(3*y*(L^2-x^2) +(2+nu)*y^3 -6*(1+nu)*hW^2*y)  

   Sxexact = -force*x*y/I  

   Txyexact = -0.5*force*(hW^2-y^2)/I  

 

   small = 1e-5  

 

initial values  

   U = 0  

   V = 0  

 

equations { define the displacement equations }  

   U:  dx(C11*dx(U) + C12*dy(V)) + dy(C33*(dy(U) + dx(V))) = 0  

   V:  dx(C33*(dy(U) + dx(V)))   + dy(C12*dx(U) + C22*dy(V)) = 0  

 

{  force regridder to resolve the shear stress.

    Avoid the ends, where the stress is extreme. }  

resolve (Txy, 100*(x/L)*(1-x/L))  

 

boundaries  

  region 1  

    start (0,-hW)  

 

    { free boundary on bottom, no normal stress }  

    load(U)=0 load(V)=0 line to (L,-hW)  

 

    { clamp the right end }  

    value(U) = Uexact     line to (L,0) point value(V) = 0  

    line to (L,hW)  

 

    { free boundary on top, no normal stress }  

    load(U)=0 load(V)=0 line to (0,hW)  

 

    { apply distributed load to Y-displacement equation }  

    load(U)=0 load(V)=dist   line to close  

 

plots  

  grid(x+mag*U,y+mag*V)   as "deformation"   { show final deformed grid }  

  elevation(V,Vexact) from(0,0) to (L,0) as "Center Y-Displacement(M)"  

  elevation(V,Vexact) from(0,hW) to (L,hW) as "Top Y-Displacement(M)"  

  elevation(U,Uexact) from(0,hW) to (L,hW) as "Top X-Displacement(M)"  

  elevation(Sx,Sxexact) from(0,hW) to (L,hW) as "Top X-Stress"  

  elevation(Sx,Sxexact) from(0,0) to (L,0) as "Center X-Stress"  

  elevation(Txy,Txyexact) from(0,hW) to (L,hW) as "Top Shear Stress"  

  elevation(Txy,Txyexact) from(0,0) to (L,0) as "Center Shear Stress"  

  elevation(Txy,Txyexact) from(hL,-hW) to (hL,hW) as "Center Shear Stress"  

 

end