<< Click to Display Table of Contents >> transient_contact_resistance_heating |
{ TRANSIENT_CONTACT_RESISTANCE_HEATING.PDE
This is a time-dependent version of the example CONTACT_RESISTANCE_HEATING.PDE
An electrical current passes through a material with an electrical contact resistance
on the center plane. The resistance heating at the contact drives a time-dependent
heat equation.
}
title "transient contact resistance heating"
variables V Temp(0.001)
definitions Kt { thermal conductivity } Heat =0 Rc = 2 { Electrical contact resistance } rho = 1 { bulk resistivity } sigma = 1/rho { bulk conductivity, I=sigma*grad(V) }
Initial values V = x/3 { a reasonable guess } Temp = 0
equations V: div(sigma*grad(V)) = 0 Temp: div(Kt*grad(Temp)) + Heat = dt(Temp)
boundaries Region 1 Kt=15 start (0,0) |
natural(V)=0 natural(temp)=0 line to (3,0)
value(V)=1 value(temp)=0 line to (3,3)
natural(V)=0 natural(temp)=0 line to (0,3)
value(V)=0 value(temp)=0 line to close
Region 2
Kt=5
start (0,0) line to (1.5,0)
contact(V) = (1/rc)*JUMP(V) { resistance jump }
natural(temp) = JUMP(V)^2/Rc { heat generation }
line to(1.5,3)
natural(V)=0 natural(Temp)=0
line to (0,3) to close
time 0 to 5 by 1e-6
monitors
for cycle=5
contour(Temp)
plots
for cycle=20
grid(x,y)
contour(V) painted
contour(Temp) painted
surface(Temp)
contour(kt*dx(temp)) painted
contour(kt*dx(temp)) painted
elevation(V) from(0,1.5) to (3,1.5)
elevation(temp) from(0,1.5) to (3,1.5)
elevation(dx(v)) from(0,1.5) to (3,1.5)
elevation(kt*dx(temp)) from(0,1.5) to (3,1.5)
histories
history(Temp) at (0.5,1.5) (1.0,1.5) (1.5,1.5) (2.0,1.5) (2.5,1.5)
end