3d_void

<< Click to Display Table of Contents >>

Navigation:  Sample Problems > Usage > 3D_domains >

3d_void

Previous pageReturn to chapter overviewNext page

{ 3D_VOID.PDE  

 

 This example shows the use of empty layers in 3D applications.

 

 The VOID statement appears inside a REGION section, in the position of a

 layer parameter definition.

 

 The syntax is:

       LAYER number VOID

 

 This statement causes the stated layer to be excluded from the problem domain

 in the current REGION. (Remember that a REGION refers to a partition of the

 2D projection plane.)

 

 Boundary conditions on the surface of the void are specified by the standard

 boundary condition facilities.

 

 In this problem, we have a heat equation with an off-center void in an irregular

 figure.  The Y faces held at zero, the Z-faces are insulated, and the sides

 of the void are held at 1.

 

}  

 

title '3D VOID LAYER TEST'  

 

coordinates  

   cartesian3  

 

select  

   errlim = 0.005  

 

variables  

   u  

 

definitions  

   k = 0.1  

   h=0  

   x0=0.2  y0=-0.3  

   x1=1  y1 = 0.3  

 

equations  

   U: div(K*grad(u)) + h = 0  

 

extrusion z=0, 0.3, 0.7, 1  

 

 

 

 

boundaries  

  region 1  

    start(-1,-1)  

    value(u)=0           { Force U=0 on perimeter }  

    line to (1,-1)  

    arc(center=-1,0) to (1,1)  

    line to (-1,1)  

    arc(center= -3,0) to close  

 

  limited region 2       { void exists only on layer 2 }  

    layer 2 VOID  

    start(x0,y0)  

    layer 2 value(u)=1  

    line to (x1,y0) to (x1,y1) to (x0,y1) to close  

 

monitors  

  elevation(u) from (-0.8,0,0.5) to (1.25,0,0.5)  

  elevation(u) from (-0.8,0,0.8) to (1.25,0,0.8)  

  contour(u) on z=0  

  contour(u) on z=0.5  

  contour(u) on z=1  

  contour(u) on y=0  

 

plots  

  elevation(u) from (-0.8,0,0.5) to (1.25,0,0.5)  

  elevation(u) from (-0.8,0,0.8) to (1.25,0,0.8)  

  contour(u) on z=0       painted  

  contour(u) on z=0.5     painted  

  contour(u) on z=0.499   painted  

  contour(u) on z=1       painted  

  contour(u) on y=0       painted  

 

end