3d_thermocouple

<< Click to Display Table of Contents >>

Navigation:  Sample Problems > Usage > 3D_domains >

3d_thermocouple

Previous pageReturn to chapter overviewNext page

{  3D_THERMOCOUPLE.PDE

  This problem constructs a thermocouple inside a box.
  It is the geometric construction only, there are no variables or equations.

  Thermocouple rods are inserted exactly half way into the sphere. Rod tops are rounded.
  Partial insertion is more difficult to generate the appropriate surfaces.

}

Title 'Thermocouple'

Coordinates Cartesian3

Definitions

 len = 10   ! length of rods
 rr = 1     ! radius of rods
 rs = 3     ! radius of sphere
 b = 1     ! box offset
 d = 0.5   ! distance between rods

 h = sqrt(rr^2 - (2*rs)^2) ! additional height from top of rod to center of sphere
 c = len + h               ! z value for center of sphere
 xr = rr+d/2               ! x center for rods

 zsphere = sphere((0,0,0),rs)       ! top sphere surface at origin (untranslated)
 rsphere1 = sphere((-xr,0,0),rr)   ! rod1 sphere surface at z=0 (untranslated)
 rsphere2 = sphere((xr,0,0),rr)     ! rod2 sphere surface at z=0 (untranslated)

 zrods = c ! regionally defined surface with default value of C
 k = 1     ! regionally defined material property with default value of 1

Extrusion

Surface 'box bottom' z = -b
Surface 'rod bottom' z = 0
Surface 'sphere bottom' z = c - zsphere
Surface 'rod top' z = zrods
Surface 'sphere top' z = c + zsphere
Surface 'box top' z = c + rs + b

Boundaries

Region 'box'
  start(b+rs,b+rs)
  line to (-b-rs,b+rs) to (-b-rs,-b-rs) to (b+rs,-b-rs) to close

Limited Region 'sphere'
  layer 3    k = 2
  layer 4    k = 2
  start(rs,0)
  arc(center=0,0) angle = 360

Limited Region 'rod1'
   zrods = c + rsphere1
  layer 2    k = 3
  layer 3    k = 3
  start(-xr,rr)
  arc(center=-xr,0) angle = 360

Limited Region 'rod2'
   zrods = c + rsphere2
  layer 2    k = 4
  layer 3    k = 4
  start(xr,rr)
  arc(center=xr,0) angle = 360

Plots
glgrid(x,y,z) on region 'rod1' on region 'rod2'
glgrid(x,y,z) on region 'sphere' on region 'rod1' on region 'rod2'
grid(x,y,z) on region 'rod1' on region 'rod2'
grid(x,y,z) on region 'sphere' on region 'rod1' on region 'rod2'
grid(x,y,z)
grid(x,z) on y=0

End