<< Click to Display Table of Contents >> 3d_sphere |
{ 3D_SPHERE.PDE
This problem considers the construction of a spherical domain in 3D.
The heat equation is Div(-K*grad(U)) = h, wth U the temperature and
h the volume heat source.
A sphere with uniform heat source h will generate a total amount of heat
H = (4/3)*Pi*R^3*h, from which h = 3*H/(4*Pi*R^3).
The normal flux at the surface will be Fnormal = -K*grad(U) <dot> Normal,
where Normal is the surface-normal unit vector. On the sphere, the unit
normal is [x/R,y/R,z/R].
At the surface, the flux will be uniform, so the surface integral of flux is
TOTAL = 4*pi*R^2*normal(-K*grad(U)) = H
or normal(-K*grad(u)) = H/(4*pi*R^2) = R*h/3.
In the following, we set R=1 and H = 1, from which h = 3/(4*pi) normal(-k*grad(u)) = 1/(4*pi) }
title '3D Sphere'
coordinates cartesian3
variables u
definitions K = 0.1 { conductivity } R0 = 1 { radius } H0 = 1 { total heat } { volume heat source } heat =3*H0/(4*pi*R0^3)
equations U: div(K*grad(u)) + heat = 0 |
|
extrusion
surface z = -SPHERE ((0,0,0),R0) { the bottom hemisphere }
surface z = SPHERE ((0,0,0),R0) { the top hemisphere }
boundaries
surface 1 value(u) = 0 { fixed value on sphere surfaces }
surface 2 value(u) = 0
Region 1
start(R0,0)
arc(center=0,0) angle=360
plots
grid(x,y,z)
grid(x,z) on y=0
contour(u) on x=0
contour(4*pi*magnitude(k*grad(u))) on x=0
contour(4*pi*magnitude(k*grad(u))) on y=0
contour(-4*pi*k*(x*dx(u)+y*dy(u)+z*dz(u))/sqrt(x^2+y^2+z^2)) on x=0 as "normal flux"
contour(-4*pi*k*(x*dx(u)+y*dy(u)+z*dz(u))/sqrt(x^2+y^2+z^2)) on y=0 as "normal flux"
vector(-grad(u)) on x=0
vector(-grad(u)) on y=0
contour(4*pi*normal(-k*grad(u))) on surface 1 as "4*pi*Normal Flux=1" { bottom surface }
contour(4*pi*normal(-k*grad(u))) on surface 2 as "4*pi*Normal Flux=1" { top surface }
surface(4*pi*normal(-k*grad(u))) on surface 1 as "4*pi*Normal Flux=1" { bottom surface }
surface(4*pi*normal(-k*grad(u))) on surface 2 as "4*pi*Normal Flux=1" { top surface }
summary
report(sintegral(normal(-k*grad(u)),1)) as "Bottom current :: 0.5 "
report(sintegral(normal(-k*grad(u)),2)) as "Top current :: 0.5 "
report(vintegral(heat)) as "Total heat :: 1"
report(sintegral(normal(-k*grad(u)))) as "Total Flux :: 1"
end