tension

<< Click to Display Table of Contents >>

Navigation:  Sample Problems > Applications > Stress >

tension

Previous pageReturn to chapter overviewNext page

{ TENSION.PDE  

 

 This example shows the deformation of a tension bar with a hole.

 

 The equations of Stress/Strain arise from the balance of forces in a

 material medium, expressed as

       dx(Sx) + dy(Txy) + Fx = 0

       dx(Txy) + dy(Sy) + Fy = 0

 

 where Sx and Sy are the stresses in the x- and y- directions,

       Txy is the shear stress, and  

       Fx and Fy are the body forces in the x- and y- directions.

 

 The deformation of the material is described by the displacements,

 U and V, from which the strains are defined as

       ex = dx(U)

       ey = dy(V)

       gxy = dy(U) + dx(V).

 

 The eight quantities U,V,ex,ey,gxy,Sx,Sy and Txy are related through the

 constitutive relations of the material. In general,

       Sx  =  C11*ex + C12*ey + C13*gxy - b*Temp

       Sy  =  C12*ex + C22*ey + C23*gxy - b*Temp

       Txy =  C13*ex + C23*ey + C33*gxy

 

 In orthotropic solids, we may take C13 = C23 = 0.

 

 Combining all these relations, we get the displacement equations:

       dx[C11*dx(U)+C12*dy(V)] + dy[C33*(dy(U)+dx(V))] + Fx = dx(b*Temp)

       dy[C12*dx(U)+C22*dy(V)] + dx[C33*(dy(U)+dx(V))] + Fy = dy(b*Temp)

 

 In the "Plane-Stress" approximation, appropriate for a flat, thin plate

 loaded by surface tractions and body forces IN THE PLANE of the plate,

 we may write

       C11 = G         C12 = G*nu

                       C22 = G

                                       C33 = G*(1-nu)/2

 where G = E/(1-nu^2)

       E is Young's Modulus

 and   nu is Poisson's Ratio.

 

 The displacement form of the stress equations (for uniform temperature

 and no body forces) is then (dividing out G):

       dx[dx(U)+nu*dy(V)] + 0.5*(1-nu)*dy[dy(U)+dx(V)] = 0

       dy[nu*dx(U)+dy(V)] + 0.5*(1-nu)*dx[dy(U)+dx(V)] = 0

 

 In order to quantify the load boundary condition mechanism,

 consider the stress equations in their original form:

       dx(Sx) + dy(Txy) = 0

       dx(Txy) + dy(Sy) = 0

 

 These can be written as

       div(P) = 0

       div(Q) = 0

 where P = [Sx,Txy]

 and   Q = [Txy,Sy]

 

 The "load" (or "natural") boundary condition for the U-equation defines

 the outward surface-normal component of P, while the load boundary condition

 for the V-equation defines the surface-normal component of Q. Thus, the

 load boundary conditions for the U- and V- equations together define

 the surface load vector.

 

 On a free boundary, both of these vectors are zero, so a free boundary

 is simply specified by

       load(U) = 0

       load(V) = 0.

 

 Here we consider a tension strip with a hole, subject to an X-load.

 

}  

 

title 'Plane Stress tension strip with a hole'  

 

select  

   errlim = 1e-4       { increase accuracy to resolve stresses }  

   painted             { paint all contour plots }  

 

variables  

   U                   { declare U and V to be the system variables }  

   V  

 

definitions  

   nu = 0.3           { define Poisson's Ratio }  

   E  = 21             { Young's Modulus x 10^-11 }  

  G  = E/(1-nu^2)  

   C11 = G  

   C12 = G*nu  

   C22 = G  

   C33 = G*(1-nu)/2  

   p1 = (1-nu)/2      

 

initial values  

   U = 1  

   V = 1  

 

equations               { define the Plane-Stress displacement equations }  

    U:  dx(dx(U) + nu*dy(V)) + p1*dy(dy(U) + dx(V))  = 0  

    V:  dy(dy(V) + nu*dx(U)) + p1*dx(dy(U) + dx(V))  = 0  

 

boundaries  

  region 1  

    start (0,0)  

    load(U)=0         { free boundary, no normal stress }  

    load(V)=0  

    line to (3,0)     { walk bottom }  

 

    load(U)=0.1       { define an X-stress of 0.1 unit on right edge}  

    load(V) = 0  

    line to (3,1)  

 

    load(U)=0         { free boundary top }  

    load(V)=0  

    line to (0,1)  

 

    value(U)=0       { fixed displacement on left edge }  

    value(V)=0  

    line to close  

 

                      { Cut out a hole }  

    load(U) = 0  

    load(V) = 0  

    start(1,0.25)  

    arc(center=1,0.5) angle=-360  

 

monitors  

  grid(x+U,y+V)     { show deformed grid as solution progresses }  

 

plots                 { hardcopy at to close: }  

  grid(x+U,y+V)     { show final deformed grid }  

  vector(U,V) as "Displacement"       { show displacement field }  

  contour(U) as "X-Displacement"  

  contour(V) as "Y-Displacement"  

  contour((C11*dx(U) + C12*dy(V))) as "X-Stress"  

  contour((C12*dx(U) + C22*dy(V))) as "Y-Stress"  

  surface((C11*dx(U) + C12*dy(V))) as "X-Stress"  

  surface((C12*dx(U) + C22*dy(V))) as "Y-Stress"  

 

end