plot_on_grid

<< Click to Display Table of Contents >>

Navigation:  Sample Problems > Usage > Plotting >

plot_on_grid

Previous pageReturn to chapter overviewNext page

{ PLOT_ON_GRID.PDE

     

 This is a variation of BENTBAR.PDE that makes use of

 the capability to plot contours on a deformed grid.

 

 The syntax of the plot command is  

 CONTOUR(data) ON GRID(Xposition,Yposition)

 

}  

 

title "Contour plots on a deformed grid"  

 

select  

   cubic       { Use Cubic Basis }  

 

variables  

   U           { X-displacement }  

   V           { Y-displacement }  

 

 

definitions  

   L = 1               { Bar length }  

   hL = L/2  

   W = 0.1             { Bar thickness }  

   hW = W/2  

   eps = 0.01*L  

   I = 2*hW^3/3       { Moment of inertia }  

 

   nu = 0.3           { Poisson's Ratio }  

   E  = 2.0e11         { Young's Modulus for Steel (N/M^2) }  

                      { plane stress coefficients }  

   G  = E/(1-nu^2)  

   C11 = G  

   C12 = G*nu  

   C22 = G  

   C33 = G*(1-nu)/2  

 

   amplitude=GLOBALMAX(abs(v)) { for grid-plot scaling }  

   mag=1/amplitude  

 

   force = -250         { total loading force in Newtons (~10 pound force) }  

   dist = 0.5*force*(hW^2-y^2)/I       { Distributed load }  

 

   Sx = (C11*dx(U) + C12*dy(V))       { Stresses }  

   Sy = (C12*dx(U) + C22*dy(V))  

   Txy = C33*(dy(U) + dx(V))  

 

  { Timoshenko's analytic solution:  }  

   Vexact = (force/(6*E*I))*((L-x)^2*(2*L+x) + 3*nu*x*y^2)  

   Uexact = (force/(6*E*I))*(3*y*(L^2-x^2) +(2+nu)*y^3 -6*(1+nu)*hW^2*y)  

   Sxexact = -force*x*y/I  

   Txyexact = -0.5*force*(hW^2-y^2)/I  

 

initial values  

   U = 0  

   V = 0  

 

equations             { the displacement equations }  

   U:  dx(Sx) + dy(Txy) = 0  

   V:  dx(Txy) + dy(Sy) = 0  

 

boundaries  

  region 1  

    start (0,-hW)  

 

    load(U)=0         { free boundary on bottom, no normal stress }  

    load(V)=0  

      line to (L,-hW)  

 

    value(U) = Uexact { clamp the right end }  

    mesh_spacing=hW/10  

      line to (L,0) point value(V) = 0  

      line to (L,hW)  

 

    load(U)=0         { free boundary on top, no normal stress }  

    load(V)=0  

    mesh_spacing=10  

      line to (0,hW)  

 

    load(U) = 0  

    load(V) = dist   { apply distributed load to Y-displacement equation }  

      line to close  

 

plots  

  grid(x+mag*U,y+mag*V)   as "deformation"   { show final deformed grid }  

     

  ! STANDARD PLOTS:

  contour(U) as "Contour on Static Grid"

  surface(U) as "Surface on Static Grid"

 

  ! THE DEFORMED PLOTS:

  contour(U) on grid(x+mag*U,y+mag*V) as "Contour on Deformed Grid"

  surface(U) on grid(x+mag*U,y+mag*V) as "Surface on Deformed Grid"

 

end