<< Click to Display Table of Contents >> morse_potential |
{ MORSE_POTENTIAL.PDE
Submitted by Ali Reza Ghaffari, 07/21/2016.
This is a Quantum Mechanic example that shows the power of Flexpde to solve such examples.
We want to solve the Schrodinger equation for Morse Potential V(x)=V0(1-exp(-alpha*x))^2 and
find the Eigen values and functions. The exact energies can be extracted from the formula below.
E[n] := h*2^(1/2)*(V0*alpha^2/m0)^(1/2)*(n+1/2)-1/2*alpha^2*h^2/m0*(n+1/2)^2
For n=0 to 4 :
E[0] := 3.037277660
E[1] := 8.361832980
E[2] := 12.68638830
E[3] := 16.01094362
E[4] := 18.33549894
You can compare the results of this script with above energies.
}
TITLE 'Morse Potential'
COORDINATES CARTESIAN1
VARIABLES Phi
SELECT
modes=6
NGRID=30
ERRLIM=1e-3
DEFINITIONS
volt
hbar=1
m0=1
v0=20
a=10 ! the renge of integrals
alpha=1
volt=v0*(1-exp(-alpha*x))^2
N=integral(phi^2)
EQUATIONS
Phi : (-hbar^2/2/m0)*(dx(dx(Phi)))+volt*Phi-LAMBDA*Phi=0
BOUNDARIES
REGION 1
START (-3*a) point value(phi)=0
LINE TO (3*a) point value(phi)=0
!MONITORS
! no monitors since problem solves so fast
PLOTS
ELEVATION(Phi+lambda,volt) FROM (-1) to (6) zoom (-1,0,6,10)
SUMMARY
REPORT(LAMBDA)
END