<< Click to Display Table of Contents >> initialeq |
{ INITIALEQ.PDE
This example illustrates use of the INITIAL EQUATIONS section.
It is s modification of the FLOAT_ZONE.PDE example that first
solves for a gaussian initial temperature distribution.
}
title "Float Zone"
coordinates xcylinder('Z','R')
variables
temp (threshold=100)
temp2(threshold=100)
definitions
k = 0.85 {thermal conductivity}
cp = 1 { heat capacity }
long = 18
H = 0.4 {free convection boundary coupling}
Ta = 25 {ambient temperature}
A = 4500 {amplitude}
source = A*exp(-((z-1*t)/.5)^2)*(200/(t+199))
tsource = time_integral(vol_integral(source))
t1 = time_integral(1.0)
initial value
temp = Ta
temp2 = Ta
initial equations
Temp: div(k*grad(temp)) + A*exp(-(z-long/2)^2)= 0
equations
Temp: div(k*grad(temp)) + source = cp*dt(temp)
Temp2: div(k*grad(temp2)) + source = cp*dt(temp2)
boundaries
region 1
start(0,0)
natural(temp) = 0
natural(temp2) = 0
line to (long,0)
value(temp) = Ta
value(temp2) = Ta
line to (long,1)
natural(temp) = -H*(temp - Ta)
natural(temp2) = -H*(temp2 - Ta)
line to (0,1)
value(temp) = Ta
value(temp2) = Ta
line to close
feature
start(0.01*long,0) line to (0.01*long,1)
time -0.5 to 19
monitors
for t = -0.5 by 0.5 to (long + 1)
elevation(temp, temp2) from (0,1) to (long,1) range=(0,1800) as "Surface Temp"
contour(temp)
contour(dt(temp))
contour(temp2)
plots
for t = -0.5 by 0.5 to (long + 1)
elevation(temp, temp2) from (0,0) to (long,0) range=(0,1800) as "Axis Temp"
histories
history(temp,dt(temp)) at (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (8,0)
(9,0) (10,0) (11,0) (12,0) (13,0) (14,0) (15,0) (16,0)
(17,0) (18,0)
history(temp2,dt(temp2)) at (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (8,0)
(9,0) (10,0) (11,0) (12,0) (13,0) (14,0) (15,0) (16,0)
(17,0) (18,0)
history(t1) as "Tintegral(1)"
history(tsource) as "Tintegral(Source)"
end