<< Click to Display Table of Contents >> implicit_curve_surface |
{ IMPLICIT_CURVE_SURFACE.PDE
This example shows how FlexPDE can be used to plot polynomial
expressions and their derivatives. This can be helpful in many
different scenarios, but is presented here because expression
F3 is used in the example IMPLICIT_CURVE_BOUNDARY.PDE.
}
Title 'Example Surfaces'
Coordinates cartesian2
Select contours=50
Definitions
f1 = (x^2+y^2)^3-4*x^2*y^2
f2 = (x^2+y^2)^2-4*x*y
f3 = (x^2+y^2)^2 - 3*x^2*y - y^3
Boundaries
region 1
start(-2,-1)
line to (2,-1) to(2,2) to (-2,2) to close
Plots
contour(F1)
contour(F1) zoom(-1,0, 2,1)
contour(dx(F1)) zoom(-1,0, 2,1)
contour(dy(F1)) zoom(-1,0, 2,1)
elevation(dx(F1),dy(F1)) from (-1,0) to (1,0)
contour(F2)
contour(F2) zoom(-1,0, 2,1)
contour(dx(F2)) zoom(-1,0, 2,1)
contour(dy(F2)) zoom(-1,0, 2,1)
elevation(dx(F2),dy(F2)) from (-1,0) to (1,0)
contour(F3)
contour(F3) zoom(-1,0, 2,1)
contour(dx(F3)) zoom(-1,0, 2,1)
contour(dy(F3)) zoom(-1,0, 2,1)
elevation(dx(F3),dy(F3)) from (-1,0) to (1,0.0)
End