anisotropic_stress

<< Click to Display Table of Contents >>

Navigation:  Sample Problems > Applications > Stress >

anisotropic_stress

Previous pageReturn to chapter overviewNext page

{ ANISOTROPIC_STRESS.PDE

 

 This example shows the application of FlexPDE to an extremely complex

 problem in anisotropic thermo-elasticity.  The equations of thermal

 diffusion and plane strain are solved simultaneously to give the

 thermally-induced stress and deformation in a laser application.

 

               -- Submitted by Steve Sutton

                  Lawrence Livermore National Laboratory

}  

 

 

title "ANISOTROPIC THERMAL STRESS"  

 

select  

   errlim = 1e-4       { more accuracy to resolve stresses }  

 

variables  

   Tp(5)               { Temperature }  

   up(1e-6)           { X-displacement }  

   vp(1e-6)           { Y-displacement }  

 

definitions  

   Qs                 { The heat source, to be defined }  

   Q0 = 3.16  

   ro = 0.2           { Heat source radius }  

 

   W = 2               { slab size constants }  

   L = 0.5  

   mag = 5000  

 

   kp11 = 0.0135       { anisotropic conductivities }  

   kp33 = 0.0135  

   kp13 = 0.0016  

 

   C11 = 49.22e5       { anisotropic elastic constants }  

   C12 =  3.199e5  

   C13 = 23.836e5  

   C15 = -3.148e5  

   C21 = C12  

   C22 = 67.2e5  

   C23 =  3.199e5  

   C25 =  8.997e5  

   C31 = C13  

   C32 = C23  

   C33 = 49.22e5  

   C35 = -3.148e5  

   C51 = C15  

   C52 = C25  

   C53 = C35  

   C55 = 24.335e5  

 

 

 

 

   

   ayy = 34.49e-6     { anisotropic expansion coefficients }  

   axx = 34.49e-6  

   azz = 25.00e-6  

   axy = 9.5e-6  

 

   h = 1.0  

 

   Tb = 0.  

   Q = Q0*(exp(-2*(x^2+y^2)/ro^2)) { Gaussian heat distribution }  

 

 

              { some auxilliary definitions }  

   qx = -kp33*dx(Tp) - kp13*dy(Tp)     { heat flux }  

   qy = -kp13*dx(Tp) - kp11*dy(Tp)  

 

                                      { expansion stress coefficients }  

   apxx = C31*ayy + C32*azz + C33*axx + C35*axy  

   apyy = C11*ayy + C12*azz + C13*axx + C15*axy  

   apzz = C21*ayy + C22*azz + C23*axx + C25*axy  

   apxy = C51*ayy + C52*azz + C53*axx + C55*axy  

 

   exx = dx(up)                       { strain }  

   eyy = dy(vp)  

   exy = 0.5*(dy(up)+dx(vp))  

                                      { stress }  

   sxx = C31*eyy + C33*exx + 2*C35*exy - apxx*Tp  

   syy = C11*eyy + C13*exx + 2*C15*exy - apyy*Tp  

   szz = C21*eyy + C23*exx + 2*C25*exy - apzz*Tp  

   sxy = C51*eyy + C53*exx + 2*C55*exy - apxy*Tp  

 

initial values  

   Tp = 5.  

   up = 0  

   vp = 0  

 

equations  

 

   Tp: dx(qx) + dy(qy) = Qs  

   Up: dx(sxx) + dy(sxy) = 0.  

   Vp: dx(sxy) + dy(syy) = 0.  

 

constraints                             { prevent rigid-body motion: }  

   integral(up) = 0                   { cancel X-motion }  

   integral(vp) = 0                   { cancel Y-motion }  

   integral(dx(vp) - dy(up)) = 0       { cancel rotation }  

 

boundaries  

region 1  

   Qs = Q  

  start(-0.5*W,-0.5*L)  

      natural(up) = 0.               { zero normal stress on all faces }  

      natural(vp) = 0.  

      natural(Tp) = h*(Tp-Tb)         { convective cooling on bottom boundary }  

  line to (0.5*W,-0.5*L)  

      natural(Tp) = 0.               { no heat flux across end }  

  line to (0.5*W,0.5*L)  

      natural(Tp) = h*(Tp-Tb)         { convective cooling on top boundary }  

  line to (-0.5*W,0.5*L)  

      natural(Tp) = 0.               { no heat flux across end }  

  line to close  

 

monitors  

  grid (x+mag*up,y+mag*vp)  

  contour(Tp) as "Temperature"  

 

plots

  grid (x+mag*up,y+mag*vp)

  contour(Tp) as "Temperature" on grid (x+mag*up,y+mag*vp)

  contour(Tp) as "Temperature" zoom(-.2,-.2,0.4,0.4) on grid (x+mag*up,y+mag*vp)

  contour(up) as "x-displacement" on grid (x+mag*up,y+mag*vp)

  contour(vp) as "y-displacement" on grid (x+mag*up,y+mag*vp)

  vector(up,vp) as "Displacement vector plot" on grid (x+mag*up,y+mag*vp)

  contour(sxx) as "x-normal stress" on grid (x+mag*up,y+mag*vp)

  contour(syy) as "y-normal stress" on grid (x+mag*up,y+mag*vp)

  contour(sxy) as "shear stress" on grid (x+mag*up,y+mag*vp)

  elevation(Tp) from (0,-0.5*L) to (0,0.5*L) as "Temperature"

  elevation(sxx) from (0,-0.5*L) to (0,0.5*L) as "x-normal stress"

  elevation(syy) from (0,-0.5*L) to (0,0.5*L) as "y-normal stress"

  surface(Tp) as "Temperature"

 

end