1d_cylinder

<< Click to Display Table of Contents >>

Navigation:  Sample Problems > Usage > 1D >

1d_cylinder

Previous pageReturn to chapter overviewNext page

{ 1D_CYLINDER.PDE

 

 This problem tests the implementation of 1D cylindrical coordinates in FlexPDE.

 A distributed source is applied to a heatflow equation.  The source is chosen as

 the analytic derivative of an assumed Gaussian solution.  The numerical solution

 is then compared to the analytical solution.

 

}  

title '1D Cylinder Test -- Gaussian'  

 

coordinates  

   cylinder1   { default coordinate name is 'R' }  

 

variables  

   u  

 

definitions  

   k = 1  

   w=0.1  

  { assume a gaussian solution }  

   u0 = exp(-r^2/w^2)  

  { apply the correct analytic source for cylindrical geometry (we could use  

     div(k*grad(u0)) here, but that would not test the 1D Cylinder expansions) }  

   s = -(4/w^2)*(r^2/w^2-1)*u0  

 

   left=point(0)  

   right=point(1/10)  

 

equations  

   U: div(K*grad(u)) +s = 0  

 

boundaries  

  region 1  

      start   left   point value(u)=u0  

      line to right point load(u)=(-2*k*r*u0/w^2)  

 

monitors  

  elevation(u) from left to right  

 

plots  

  elevation(u,u0) from left to right  

  elevation(u-u0) from left to right as "Error"  

  elevation(-div(grad(u)),s) from (0.01) to right  

  elevation(-grad(u),-grad(u0)) from (0.01) to right  

 

end