Navigation:  Sample Problems > usage > discontinuous_variables >

contact_resistance_heating

Print this Topic Previous pageReturn to chapter overviewNext page

{  CONTACT_RESISTANCE_HEATING.PDE

 

 Contact resistance is modeled using the keywords JUMP and CONTACT.

JUMP represents the "jump" in the value of a variable across an interface

   (outer value minus inner value, as seen from each cell),

   and is meaningful only in boundary condition statements.

CONTACT is a special form of NATURAL, which requests that the boundary

 should support a discontinuous value of the variable.

 The model is one of "contact resistance", where the outward current across an

 interface is given by

   R*I = -Jump(V) [=(Vinner-Vouter)],

 and R is the contact resistance.

 Since CONTACT, like NATURAL, represents the outward normal component

 of the argument of the divergence operator,  the contact resistance condition

 for this problem is represented as

   CONTACT(V) = JUMP(Temp)/R

 In this problem, we have two variables, voltage and temperature.

 There is an electrical contact resistance of 2 units at the interface between

 two halves, causing a jump in the voltage across the interface.

 The current through the contact is a source of heat in the temperature equation,

 of value P = R*I^2 = Jump(V)^2/R

 

 

}

 

title "contact resistance heating"

 

variables

   V

   Temp

 

definitions

   Kt     { thermal conductivity }

   Heat  =0

   Rc = 2     { Electrical contact resistance }

   rho = 1 { bulk resistivity }

   sigma = 1/rho   { bulk conductivity, I=sigma*grad(V) }

   temp0=0

 

Initial values

    Temp = temp0

 

equations

   V:       div(sigma*grad(V))  = 0

   Temp:    div(Kt*grad(Temp)) + Heat =0

 

boundaries

Region 1

   Kt=5

  start (0,0)

  natural(V)=0   natural(temp)=0 line to (3,0)

  value(V)=1     value(temp)=0   line to (3,3)

  natural(V)=0   natural(temp)=0 line to (0,3)

  value(V)=0     value(temp)=0   line to close

 

Region 2

   Kt=1

  start (0,0)

  line to (1.5,0)

  contact(V) = (1/rc)*JUMP(V) { resistance jump }

  natural(temp) = JUMP(V)^2/Rc   { heat generation }

      line to(1.5,3)

  natural(V)=0   natural(Temp)=0 line to (0,3) to close

 

monitors

  contour(Temp)

 

plots

  grid(x,y)

  contour(V)    painted

  contour(Temp)    painted

  surface(Temp)

  contour(kt*dx(temp))    painted

  contour(kt*dx(temp))    painted

  elevation(V) from(0,1.5) to (3,1.5)

  elevation(temp) from(0,1.5) to (3,1.5)

  elevation(dx(v)) from(0,1.5) to (3,1.5)

  elevation(kt*dx(temp)) from(0,1.5) to (3,1.5)

end

 


Page url: index.html?usage_discontinuous_variables_contact_resistance_heating.html